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Abstract 

The first part of the paper emphasizes that the problem 
of the effect of the rotational symmetry of crystals on 
their tensor properties is completely solved for the 
groups of 1-, 2- and 4-fold principal symmetry since 
simple general formulas can be given which provide the 
schemes of a (polar or axial) general tensor of any rank 
in these groups, thus yielding a closed-form solution. 
These formulas are derived both by the new method of 
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vector representatives [introduced in paper I" Fumi & 
Ripamonti (1980). Acta Cryst. A36, 535-551] and by 
the direct-inspection method. In the second part, it is 
emphasized that simple general rules can be given to 
obtain the schemes of a (general or particular, polar or 
axial) tensor of any rank in the trigonal and hexagonal 
groups other than group 3 from the corresponding 
scheme in group 3(3z). These rules are given directly by 
the formulas obtained in the first part for the groups (or 
generators) of order 2. These compact formulas and 
rules are applied to two specific tensor properties dis- 
cussed in recent literature, pointing out errors in some 
of the reported schemes. Brief discussions are finally 
given of various techniques to obtain the tensor 
schemes in the cylindrical and spherical groups, in 
particular of the new methods introduced in paper I. 

0567-7394/80/040551-08501.00 © 1980 International Union of Crystallography 



552 TENSOR PROPERTIES AND ROTATIONAL SYMMETRY OF CRYSTALS. II 

Introduction 

In § 2 of paper I (Fumi & Ripamonti, 1980) it was 
emphasized that the crystallographic groups with 1-, 2- 
and 4-fold principal symmetry are 'easy groups' for the 
problem of obtaining the scheme of a tensor, owing to 
the existence for them of Cartesian orthogonal frames 
(of the type conventionally adopted in crystal physics) 
which are purely permutat ive  (or multiplicative) 
(Fumi, 1952a). The non-vanishing components are at 
most related to each other in pairs, and the choice of 
independent components is irrelevant (Fumi, 1952a).* 
Simple, general formulas can thus be given for the 
schemes of a (polar or axial) general tensor of any rank 
in these groups (see e.g. Jagodzinski & Wondratschek, 
1955), thus providing a closed-form solution. In part 
(a) we will use the method of vector representatives 
introduced in paper I to derive the closed-form solution. 
We will also see that the solution follows naturally from 
the direct-inspection method (Fumi, 1952a). 

In § 2 of paper I it was also emphasized that the 
trigonal and hexagonal groups other than group 3(3~) 
are 'very easy groups' for the problem of obtaining the 
scheme of a tensor, owing to the existence of 
(conventional) Cartesian orthogonal frames which are 
purely multiplicative for the generators (all of order 2) 
to be added to the generator 3 z (Fumi, 1952b).t The 
additional relationships between tensor components 
merely state the vanishing of some components, and 
the choice of independent components follows from the 
choice made in group 3(3~) (Fumi, 1952b).* Simple, 
general rules can thus be given for obtaining at once 
the schemes of a (general or particular, polar or axial) 
tensor of any rank in these groups from the correspon- 
ding scheme in group 3(3z) (see, for example, Jagod- 
zinski & Wondratschek, 1955). In part (b) we will 
present a table of these rules which follows directly 
from the formulas derived in part (a) for the groups (or 
generators) of order 2. 

nents do not change sign, and do change sign, under the 
inversion, respectively. 

We identify the Cartesian orthogonal frame by a set 
of three orthogonal unit vectors |, j and k, and we 
denote by n/, nj and n k the numbers of indices of types 
i, j and k contained in a given Cartesian orthogonal 
tensor component. 

The generating elements of interest are: the inversion 
1, the rotation 2 / o f  order 2 about the i direction, the 
rotation-inversion :2i, the rotation 4 / o f  order 4 about 
the i direction, the rotation-inversion 4/ and the 
rotation 31111 ] of order 3 about the direction ! + j + ~:. 

Let us consider first the generators of order 2. By 
definition, the inversion i multiplies a g-tensor compo- 
nent by 1 and a u-tensor component by - 1 .  The 
generators 2/ and 2/ can be conveniently treated 
together because their rank-dependent part is only their 
twofold rotation part. The twofold rotation axis 2/acts 
multiplicatively on the coordinates i, j and k through 
the real multipliers mi = + 1, mj  = m k = --1, and thus 
induces on the tensor components the multiplicative 
transformation ( -  1)nJ +"k. The conditions of invariance 
for the components of a tensor of rank r read then as 
follows: 

for a g tensor component under 2/or 2i 
and / nj + n k = even, or 

for a u tensor component under 2i n i = r mod 2; 

for a u tensor component under 2t nj + n k = odd, or 
n/= (r + 1) mod 2. 

Let us consider now the generators 4i and 3illl I for 
which there is no need to distinguish g and u tensors. 
The rotation 4 i sends 

i - , i ,  j - - , k ,  k - - , - j  

and thus induces the permutative transformation 
(-1)nkp, where p permutes j and k, while the rotation 
3ii1~ 1 sends 

i - , j ,  j - , k ,  k - - , i  

Part (a). Groups with 1-, 2- and 4-fold principal 
symmetry 

(a)l. Application of the direct-inspection method 

Let us formalize the transformation properties of the 
(conventional) Cartesian orthogonal tensor compo- 
nents under the generating elements of the groups of 
interest. We will distinguish simply g (gerade) and  
u(ungerade) tensors, namely tensors whose compo- 

* In these circumstances the new method described in paper I, 
which involves the use of vector representatives and a criterion for 
an optimal choice of independent components, reduces obviously to 
the method of vector representatives. 

5" The same is true for the generators to be added to the 
cylindrical axis 0% to obtain the groups 002, oom, oo/m and oo/mm. 

and thus induces the permutative transformation q, 
where q permutes i , j  and k. 

Finally, the transformations induced by the rotation- 
inversion 'tt follow at once: for a g tensor, they are the 
same transformations induced by the rotation 4i ,  while 
for a u tensor they involve an extra minus sign. 

The superposition of the conditions of invariance of 
the Cartesian orthogonal tensor components under the 
generating elements of a group yields directly the 
pertinent closed-form expression of the scheme of a g 
or u tensor of any rank. The generating elements 
adopted for each group are given in Appendix A in 
Table 3. 

Table 1 reports the tensor schemes for the various 
groups. We have used the traditional terminology of 
'polar' and 'axial' tensors: g tensors include polar 
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tensors of even rank and axial tensors of odd rank, 
while u tensors include polar tensors of odd rank and 
axial tensors of even rank. 

(a)2. Application of the method of vector 
representatives 

We have shown in paper I (Fumi & Ripamonti, 1980) 
that the set of numerical coefficients with which a 

Cartesian orthogonal tensor component enters into a 
complete family of linearly independent tensor in- 
variants of a group is a valid representative vector of 
the component when this is subject to the condition of 
invariance under the group in question. 

In the groups of interest here, the permutative (or 
multiplicative) character of the transformations of the 
(conventional) Cartesian orthogonal tensor compo- 
nents under the operations of the group ensures the 

Table 1. Schemes for general tensors in the groups with 1-, 2- and 4-fold prineipal symmetry 

The groups are designated by the international notation. 
The Cartesian orthogonal frames are chosen according to the standard conventions adopted by Nye (1957). 
The symbol c denotes a tensor component, and the symbols n~, ny and n z denote its numbers of x, y and z indices. 
The symbol r denotes the rank of the tensor. 

(a) Triclinic, monoclinic and rhombic groups 

When it is relevant, the Cartesian orthogonal frame is specified by giving the position of one or two of its axes relative to symmetry elements 
of the group. 

Polar tensors of even rank 
Axial tensors of odd rank 

All components are independent i 
Components with ny = r mod 2 are independent 2 
Other components are zero (y II 2) 

Components as in 2 m 
(y_l_m) 

Components as in 2 2 / m  
(y II 2) 

Components with n x = r rood 2, ny = r mod 2 are 222 
independent (x II 2, y II 2) 

Other components are zero 
Components as in 222 m m 2  

( x _ L m ,  y _ l _ m )  

Components as in 222 m m m  
(x II 2, y II 2) 

Polar tensors of odd rank 
Axial tensors of even rank 

All components are zero 
Components as for polar tensors of even rank and axial 

tensors of odd rank 
Components with ny = (r + 1)mod 2 are independent 
Other components are zero 
All components are zero 

Components as for polar tensors of even rank and axial 
tensors of odd rank 

Components with n x = (r  + 1)mod 2, ny = (r + 1)mod 2 are 
independent 

Other components are zero 

All components are zero 

(b) Tetragonal groups 

The z axis of the Cartesian orthogonal frame is parallel to the principal symmetry axis: when this is relevant, the position of the x axis 
relative to a symmetry element of the group is specified. 
The permutation operator Pl permutes x and y: thus the tensor component Plc is obtained from c by exchanging its x and y indices. 

Polar tensors of even rank 
Axial tensors of odd rank 

Components with n z = rmod 2 are related as follows: 
c = (--  1)nxplc 

Other components are zero 
Components as in 4 

Components as in 4 
Components with n x = rmod 2, ny = rmod 2 are related 

as follows: c = ( - 1 ) r p l c  
Other components are zero 

Components as in 422 

Components as in 422 

Components as in 422 

Polar tensors of odd rank 
Axial tensors of even rank 

Components as for polar tensor of even rank and axial 
tensors of odd rank 

4 / m  

422 
(x II 2) 

Components with n z -- rmod 2 are related as follows: 
c = (- -  1)"xplc  

Other components are zero 

All components are zero 
Components as for polar tensor of even rank and axial 

tensors of odd rank 

4 m m  
( x  _1_ m )  

zt2m 
(x, 2) 

4 / m m m  
(x II 2) 

Components with n x = (r + 1)mod 2, ny = (r + 1)mod 2 
are related as follows: c = --(--1)rp~ c 

Other components are zero 
Components with n x = rmod 2, ny = rmod 2 are related as 

follows: e = - ( -  1)rpl c 
Other components are zero 

All components are zero 
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Table 1 ( c o n t . )  

(c) Cubic groups 

The x, y and z axes of the Cartesian orthogonal frame are parallel to the three symmetry axes of order 2 in the first two groups, and to the 
three symmetry axes of order 4 in the last three groups. 
The permutation operators Pl, P2 and P3 permute x, y and z in pairs, while the permutation operators q~ and q2 permute x, y and z cyclically. 
Thus the tensor components p~c,  P2C and p3c are obtained from c by exchanging in it the x and y indices, the y and z indices and the z and 
x indices, respectively. Instead the tensor components qi c and q2c are obtained from c by permuting cyclically x with y, y with z, z with x 
and x with z, z with y, y with x, respectively. 

Polar tensors of even rank Polar tensors of odd rank 
Axial tensors of odd rank Axial tensors of even rank 

Components with n x = rmod 2, ny = rmod 2 are related 23 
as follows: c = q~c = q2 c 

Other components are zero 
Components as in 23 m3 
Components with n x = rmod 2, ny = rmod 2 are related 432 

as follows: c = ql c = q2 c = (--1)rpl c = ( - - l ) r  p2  c = 

(-- 1)~p3 c 
Other components are zero 
Components as in 432 43m 

Components as in 432 m 3 m  

Components as for polar tensors of even rank and axial 
tensors of odd rank 

All components are zero 
Components as for polar tensors of even rank and axial 

tensors of odd rank 

Components with n x = rmod 2, ny = rmod 2 are related as 
follows: c = ql c = q2 c = - ( -  1)rp~ c -= 
- ( -  1)rp2 c = - ( -  1)rp3 c 

Other components are zero 
All components are zero 

existence of  complete sets of  independent  tensor  
invariants  which are actually d i s j o i n t  ( i . e .  which have 
n o  components  in common) .  These disjoint tensor 
invariants are reported in Appendix A (Table 3), in a 
form valid for a g or u tensor of  any rank. 

Natural ly ,  the corresponding representative vectors 
of  the Cartes ian or thogona l  tensor  components  are 
part icularly simple: since a componen t  enters at most  
in one invariant ,  the representative vectors have at most  
one non-zero entry. Thus,  the tensor  scheme of  a g or u 
tensor of  any rank  in one of  these groups follows quite 
easily. Indeed one can make  at once the following state- 
ments:  

(a) components  not  entering in the disjoint in- 
variants  are zero since their representative vectors are 
zero; 

(b) components  entering in the disjoint invariants  
are non-zero,  since their representative vectors have 
one non-zero entry. 
Fur thermore :  

(b') components  not  entering in the same disjoint 
invariant  are unrelated, since their representative 
vectors are independent  owing to the non- 
correspondence of  their non-zero entries; 

(b") components  entering in the same disjoint 
invariant  are equal when taken with their respective 
coefficients, since their representative vectors are 
multiples of  each other owing to the correspondence of  
their non-zero entries. 

The closed-form expressions of  the tensor  schemes 
read out of  the disjoint tensor invariants  given in Table 
3 are reported in Table  1. It should be mentioned that  
these results could be obtained by the method  of  vector  
representatives also by alternative routes, in which, for 
example, the method as such would be applied 

separately to one-generator  subgroups of  the groups 
with more than one generator ,  r~ither than to the group 
as a whole, and the results would then be super- 
imposed. 

(a)3. Schemes for general tensors in the groups with 
1-, 2- and 4-fold principal symmetry 

The tensor schemes for the groups in question 
reported in Table 1 are more explicit than  those given 
by Jagodzinski  & Wondra t schek  (1955, Table 8), and 
are expressed in more compact  forms, involving the 
rank of  the tensor. It  may be noted that  Jagodzinski  & 
Wondra t schek  obtained their schemes essentially 
through a formalizat ion of the results given by the 
direct-inspection method (Fumi, 1952a; see Jagodzinski  
& Wondra t schek ,  1955, Table 7). 

The tensor schemes have a part icular ly simple 
character  in the triclinic, monocl inic  and rhombic  
groups (Table la) :  in these groups,  the (conventional)  
Car tes ian or thogonal  tensor components  undergo 
purely multiplicative t ransformat ions  under  the 
operat ions  of  the group, and thus the scheme consists 
simply in identifying the tensor components  which are 
non-zero. In the te t ragonal  and cubic groups,  the tensor 
schemes have a slightly less simple form (Table 1 b and 
c). In fact, in these groups the (conventional)  Car tes ian 
or thogonal  tensor components  undergo permutat ive (or 
multiplicative) t ransformat ions  under the operat ions  of  
the group. Thus  the scheme consists in identifying first 
the tensor components  which are non-zero in the sub- 
group of  the given group in which the t ransformat ions  
of  the tensor components  are purely multiplicative 
( 'multiplicative'  subgroup);  and in writing then the 
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relations among these tensor components due to the 
other operations of the group.* 

Table 1 (b) and (c) reveals several instances in which 
the vanishing of a particular tensor component in a 
given group is not caused by the 'selection rule' due to 
the 'multiplicative' subgroup of the group, but arises 
instead from the relations between the tensor compo- 
nents which are non-zero in this subgroup. Specific 
instances of this type are as follows: the component n~ 
-- r of a u tensor in group L], the component nz = r of 
an axial tensor of even rank in group 42m, and the 
components n x = r, ny_-- r and nz = r of an axial tensor 
of even rank in group 43m. The essential though partial 
role of the 'multiplicative' subgroup of a crystallo- 
graphic group in imposing the vanishing of tensor 
components is explicitly illustrated by the tensor 
schemes given in Table 1 (and by the rules reported in 
Table 2 of part (b) of this paper). Lax (1974) has 
formalized the results given by the direct-inspection 
method (Fumi, 1952a,b) for the vanishing of tensor 
components in the groups of 1-, 2- and 4-fold principal 
symmetry (and for the additional vanishings of tensor 
components in passing from group 3(3~) to the other 
trigonal and hexagonal groups) in the form of a 
'theorem of the group of indices' and of a 'theorem of 
the reversal group of indices' (Lax, 1974; theorems 
4.4.1 and 4.4.2). These theorems can be paraphrased as 
follows: consider a given tensor component; identify 
the elements of the crystal point group which do not 
transform the component into another component; if 
one or more of the elements of this 'group of indices' 
(or of the larger 'reversal group of indices' when the 
tensor has internal symmetry) changes the sign of the 
component the component vanishes. 

We illustrate the use of Table 1 by one example. 
Consider a polar tensor of rank 6, symmetric in the 
exchange of the first two indices and in the permutation 
of the remaining four indices, in group 3,2m. Table 1 (b) 
tells us that the components with n~ = 6mod 2, ny = 
6mod 2 are related as follows, c = (-1)rp~ c, while the 
other components are zero. Since n x + n r + n z = 6 and 
n x and ny are even, n~ must also be even. There is thus a 
total of ten possible sets of values for n x ,  n y  and n~: 
three sets of type 6,0,0; six sets of type 4,2,0; and the 
set 2,2,2. The components of these sets are connected 
by the following relations: 

600 and 060 x x x x x x  = y y y y y y ;  

0 0 6  z z z z z z ;  

420 and 240 x x x x y y  = y y x x y y  

and pertinent permutations, namely 
y y x x x x  = x x y y y y  

x y x x x y  = x y x y y y ;  

* It should be noted that in the table for a (polar or axial) general 
tensor of rank 3 in these groups reported by Fieschi (1957) the 
symbols a (axial) and p (polar) at the head of the table must be 
exchanged. This oversight had already been corrected without 
mention by Birss (1962) (Tables 2a and 2d). 

402 and 042 x x x x z z  = y y y y z z  

and pertinent permutations, namely 
z z x x x x  = z z y y y y  

z x x x x z  = y z y y y z ;  

204 and 024 x x z z z z  = y y z z z z  

and pertinent permutations, namely 
z z x x z z  = z z y y z z  

z x x z z z  = y z y z z z ;  

222 x x y y z z  = y y x x z z  

and pertinent permutations, namely 
z z x x y y  

z x x y y z  = y z x x y z  

x y x y z z .  

This scheme agrees with the scheme which follows 
from the quasipotential O(a, E) reported by Perfilova, 
Sirotin & Sonin (1969);* their Table 1 omits, however, 
the last three non-zero components. 

Part (b). Trigonal and hexagonal groups other than 
group 3 

The brief discussion of the trigonal and hexagonal 
groups other than group 3 given in the I n t r o d u c t i o n  

makes it clear that a particularly convenient approach 
for obtaining the tensor schemes in these groups is an 
approach by subgroups, starting from the results for 
group 3(3z).t 

The approach can be viewed, alternatively, as a 
superposition of the results given by the new methods 
presented in paper I for the subgroups generated by the 
generators of each group (specifically, the complete 
method described in paper I for group 3(3~), and the 
method of vector representatives for the subgroups 
generated by the additional generators of order 2), or 
as an application of the direct-inspection method to the 
results for group 3(3z) in the spirit of Fumi (1952b). 

The generators that we choose for the various groups 
- in accordance with the standard crystallographic 
settings adopted by Nye (1957) -  are as follows: 

trigonal groups 3z(3 ), 3 z i(3), 3z2x(32), 3~2x(3m), 

3~2xl(3m); 

hexagonal groups 3~2~(6), 3z2~(6), 3~2~ i(6/m), 

3zEz2x(622), 3 ~ 2 z 2 x ( 6 m m ) ,  

3~2z2x(rm2), 3~2~2x i ( 6 / m m m ) .  

* The authors surprisingly assert that the application of the direct 
method of coordinate transformations to this case is 'very trouble- 
some'. In fact, the group 42m is one of the groups in which the 
direct-inspection method (Fumi, 1952a) actually yields the tensor 
schemes by direct inspection, and thus the application of this 
method to the case at hand is quite simple though unnecessary 
owing to the availability of the closed-form expression of the tensor 
schemes. 

"[" An approach by subgroups is convenient also for cylindrical 
and spherical groups (see Appendix B). 
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For instance, we treat for convenience the sixfold axis 
as a superposition of a threefold axis and a twofold 
axis in the same direction, as Wondratschek (1952)has 
already done. 

The resulting set of general rules to pass from a 
tensor scheme in group 3(3~) to the corresponding 
tensor schemes in the various trigonal and hexagonal 
groups are given in Table 2. These rules coincide, in 
fact, with the general formulas derived in part (a) to 
obtain the schemes of (general) tensors in the crystallo- 
graphic groups of order 2. 

Table 2 is more explicit than the corresponding table 
by Jagodzinski & Wondratschek (1955) (Table 9),* 
and the rules are expressed in more compact form, 
involving the rank of the tensor. It may be noted that 
Jagodzinski & Wondratschek (1955) obtained their 
Table 9 essentially by formalizing the results given by 
the direct-inspection method (Fumi, 1952a,b; see 
Jagodzinski & Wondratschek, 1955, Table 7). 

An alternative approach to the derivation by the new 
methods of the schemes for (general) tensors in these 
groups would entail the application of the complete 
method described in paper I (which involves the use of 
vector representatives and a criterion for an optimal 

* It should be noted that for groups 32, 3m and 3m, Jagodzinski 
& Wondratschek (1955) do not use the standard crystallographic 
setting adopted by Nye (1957). This is due to their choice of a 
minimal  global set of generators for all the crystallographic groups 
which excludes the generators 2 x and 2x. 

choice of independent components) to each group as a 
whole. This would, of course, require the construction 
of the tensor invariants appropriate to the various 
complete groups: these can, however, be obtained 
rather simply in a closed form [analogous to the one 
displayed in paper I for the tensor invariants in group 
3(3z)1 by adopting a (complex) permutative reference 
frame for each complete group (Sirotin, 1961).* 

We use now Table 2 to check the schemes for the 
(non-tensorial) array for fourth-order elasticity in the 
trigonal and hexagonal groups other than group 3~" 
obtained by Chung & Li (1974) by applying the direct- 
inspection method to their results for group 3 in the 
spirit of Fumi (1952b). We find that the schemes 
reported by Chung & Li (1974) in their Table 1, 
columns RI, HII and HI, are affected by a number of 
errors. Some of these errors follow, of course, from the 
errors for group 3 (Laue group RII) discussed in paper 
I: specifically for group 32 (Laue group RI) these 
errors affect the expressions of 1356, 3455, 4456, 4466, 
5556 and 5666, while for group 6 (Laue group HII) and 
for group 622 (Laue group HI) they affect the 
expression of 4466. There are, however, additional 
errors: these concern specifically the expression of 

* This type of approach is applicable also to the cylindrical 
groups different from group oo. 

t Fourth-order elasticity is also discussed in Appendix C for the 
case of an isotropic body. 

Table 2. Rules to obtain the schemes of (general or particular) tensors in the various trigonal and hexagonal 
groups from the scheme for group 3 (3z) 

The groups are designated by the international notation. 
The Cartesian orthogonal frames are chosen according to the standard conventions adopted by Nye (1957). The z axis is parallel to the 
principal symmetry axis: when this is relevant, the position of the x axis relative to a symmetry element of the group is specified. 
The symbols n x, ny and n~ denote the numbers of x, y and z indices in a tensor component, while r is the rank of the tensor. 

Polar tensors of even rank 
Axial tensors of odd rank 

Components as in 3 

Components with n x = rmod 2 as in 3 
Other components are zero 

Components as in 32 

Components as in 32 

Components with nz = rmod 2 as in 3 
Other components are zero 

Components as in 6 

Components as in 6 
Components with n x = rmod 2, n~ = rmod 2 as in 3 
Other components are zero 

Components as in 622 

Components as in 622 

Components as in 622 

32 
(x JI 2) 

3m 
(x _L m) 

3m 
(x II 2) 

6 

6/m 
622 

(x II 2) 
6ram 

( x  _1_ m) 

6m2 
( x  _L m) 

6 / m m m  
(x II 2) 

Polar tensors of odd rank 
Axial tensors of even rank 

All components are zero 

Components as for polar tensors of even rank and axial 
tensors of odd rank 

Components with n x = (r + 1)mod 2 as in 3 
Other components are zero 

All components are zero 

Components as for polar tensors of even rank and axial 
tensors of odd rank 

Components with n z = (r + 1)mod 2 as in 3 
Other components are zero 
All components are zero 

Components as for polar tensors of even rank and axial 
tensors of odd rank 

Components with n x = (r + 1)mod 2, n, = rmod 2 as in 3 
Other components are zero 

Components with n x = (r + 1)mod 2, n z = (r + 1)mod 2 as 
in 3 

Other components are zero 

All components are zero 
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1366 in groups 32, 6 and 622 and the vanishing of 
2222 in groups 32 and 622, of 2455 in group 32 and of 
1666 in group 6. 

Table 3. (cont.) 
(b) Tetragonal groups 

The permutation operator pl permutes x and y. 

Group G 
APPENDIX A (Generators Tensor 

• adopted) type 

Complete sets of disjoint tensor invariants in the groups 4 g, u 
with 1-, 2- and 4-fold principal symmetry are reported (4~) 
in Table 3 in a form valid for a g or u tensor of any 4 g 
rank. They can be obtained straightforwardly by @) u 
applying the standard projection operator for in- 

4 / m  g variants provided by group theory to the (conventional) (4 :  i) u 
Cartesian orthogonal components of the tensors in 422 g,u 

question. More simply, these invariants can be obtained (4: 2A 
by using an equivalent operator, introduced by Sirotin 
(1961) (see paper I, § 3c and paper II, part b). 

A P P E N D I X  B 

A subgroup approach quite analogous to that of part 
(b) is convenient to obtain the tensor schemes in the 
cylindrical groups oo2, ~m,  oo/m and oo/mm, starting 
from the results for group oo(o%). 

Similarly, a convenient treatment of the spherical 
groups 0+(3) [and 0(3)] starts from the results for 

Table 3. Disjoint tensor invariants in the groups with 
1-, 2- and 4fold principal symmetry 

The groups are designated by the international notation. 
The Cartesian orthogonal frames are chosen according to the 
standard crystallographic conventions adopted by Nye (1957) and 
are specified in the various groups by the generators adopted: a 
symbol 2 x denotes a twofold rotation axis parallel to the x axis. 
The tensor-type symbols g and u stand for g e r a d e  and ungerade  
tensors, i.e. for tensors whose components do not change sign, and 
do change sign, under the inversion, respectively. 
The symbol e denotes a tensor component, and the symbols 
n x, ny and n~ denote its numbers of  x, y and z indices. 
The symbol r denotes the rank of the tensor. 

(a) Triclinic, monoclinic and rhombic groups 

4 m m  g 
(4: 2~) u 

42m g 
(4~, 2x) u 

4 / m m m  g 

(4,, 2x, [) u 

(c) Cubic groups 

Group G 
(Generators Tensor 

adopted) type Disjoint tensor invariants 

i g Each c 
(i)  u No invariant 
2 g, u Each e with ny = rmod 2 
(2y) 
m g Invariants as in 2 

(2y) u Each c with ny = (r + 1)mod 2 
2 / m  g Invariants as in 2 

(2y, [) u No invariant 
222 g, u Each c with n x = rmod 2, 

(2~, 2y) ny = rmod 2 
m m 2  g Invariants as in 222 

(2x, 2y) u Each c with n x = (r  + 1)mod 2, 
ny = (r + 1)mod 2 

m m m  g Invariants as in 222 
(2 x, 2y, [) u No invariant 

Disjoint tensor invariants 

c + ( - l ) "xp t  c for each c with 
n~ = rmod 2 

Invariants as in 4 
c - ( -  1)"xpl  c for each c with 

n z = rmod 2 
Invariants as in 4 
No invariant 
e +  ( - - 1 ) r p l c  

for each c with n x = rmod 2, 
ny = rmod 2 

Invariants as in 422 
c - ( -  1ypl  c 

for each c with nx = (r + 1)mod 2, 
ny = (r + 1)rood 2 

Invariants as in 422 
C --  (--  1)rpl  C 

for each c with n x = rmod 2, 
ny = rmod 2 

Invariants as in 422 
No invariant 

The permutation operators Pl, P2 and P3 permute x, y and z in pairs, 
while the permutation operators ql and q2 permute x, y and z 
cyclically (see Table lc). 

Group G 
(Generators Tensor 

adopted) type Disjoint tensor invariants 

23 g,u c + q l c  + q2 ¢ 
(2z, 31111 I) for each c with n x = rmod 2, 

ny = rmod 2 
m3 g Invariants as in 23 

(2 v 3v111,1) u No invariant 

432 g,u c + q l c + q 2 c + ( - - 1 ) r ( p l c + p 2 c + p 3 c )  
(4~, 311111) for each c with nx = rmod 2, 

ny = rmod 2 

43m g Invariants as in 432 

(4~, 311111) u c + q l c  + q2 c -  ( - 1 ) r ( p l c  + p 2  c + p 3 c )  
for each c with n x = rmod 2, 
ny = rmod 2 

m 3 m  g Invariants as in 432 
(4~,3t1111,1) u No invariant 

group oo(o%) and superimposes on these the results for 
the subgroups generated by the threefold axis 311nl 
(and by the inversion i). 

Other convenient subgroup treatments of the cylin- 
drical and spherical groups are based on an important 
theorem by Hermann (1934) which states that tensors 
of rank r < n cannot distinguish a symmetry axis of 
order n from an axis of cylindrical symmetry [see, for 
example, Jagodzinski & Wondratschek (1955) p. 53]: 
in particular for any tensor of rank r < 12, the simple 
trick of superimposing the results for group 3(3~) and 
for group 4(4z) yields directly the results for group 
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oo(oo~), while the simple trick of superimposing the 
results for group 3(3z) and for group 432 (or m3m) 
yields directly the results for group 0+(3) [or O(3)1. 
The analogous trick of superimposing the results for 
group 6/mmm and for group m3m [adopted, for 
example by Hearmon (1953) without justification] 
yields directly the results for group 0(3) for any tensor 
of rank r < 12. Similarly, the trick (see Nye, 1957, p. 
141) of superimposing the results for group m3m and 
for the group generated by 8 z (a 'difficult' symmetry 
axis!) yields directly the results for group 0(3) for any 
tensor of rank r < 8. [Juretschke (1975), § 13.3, dis- 
cusses the simple tricks of superimposing the results for 
group 4(4z) or 6(6z) (or the results for group m3m) with 
the results for the group generated by a 'suitable' 
rotation about the z axis, but he cannot make precise 
statements on the order of the symmetry axis required 
for a tensor of given rank since he ignores Hermann's 
(1934) theorem.] 

The spherical groups 0+(3) and 0(3) can be tackled 
also by a method entirely analogous to the complete 
method described in paper I for group 3(3z), i.e. by the 
use of vector representatives with a criterion for an 
optimal choice of independent components. Complete 
families of tensor invariants can be constructed by the 
technique of vector products described by Weyl (1946), 
or by the use of Weyl's (1946) integrity base. The 
optimal choice of independent components in 0+(3) 
can be deduced from the optimal choice for c~ (~z) dis- 
cussed in paper I. The optimal choice in 0(3) is the 
same as in 0+(3) for g tensors, while u tensors vanish in 
0(3). 

In this context, one should mention also the treat- 
ments of the elastic tensors of an isotropic body based 
on the construction of the most general invariant 
expression of the elastic energy in terms of the three 
basic spherical invariants of the strain and of their 
products (see Love, 1927; Murnaghan, 1951; 
Nran'yan, 1965). 

A P P E N D I X  C 

Fourth-order elasticity has been studied for the case 
of an isotropic body  by a number of authors 
(Krishnamurty, 1963; Nran'yan, 1965; Chung & Li, 
1974; Juretschke, 1975), using various types of tech- 
niques discussed in Appendix B. Krlshnamurty 
(1963), Nran'yan (1965) and Chung & Li (1974) treat 
a (non-tensorial) array for fourth-order elasticity, while 
Juretschke (1975) treats the fourth-order elastic tensor: 
the various authors adopt also different independent 
components. Nran'yan (1965) uses the technique 
involving the three basic spherical invariants of the 
strain: the scheme reported is correct except for an 
unwanted minus sign in the expression 4455 = 2.4444. 
Chung & Li (1974), instead, adopt essentially 
Hearmon's (1953) trick: unfortunately, they refer 
incorrectly to the superposition of the results for group 

23 and for group 6(6z) [which yields the results for 
group 0+(3) only for tensors of rank r < 6], but they 
then superimpose correctly the results for group 432 
and for group 6(6~) [or 3(3z)]. However, the scheme 
they report in Table 1, column I is affected by a 
number of errors: specifically, the following expressions 
should read as follows: 1155 = 2266 = 4.1111 - 1112; 
1355 = 4.1111 + 2.1112 - 2.1122; 1456 = 2456 = 
3456 = 8.1111 - 2.1112 - 4.1122 + 2.1123; 
2333 -- 1112; 2355 = 3.1112 - 1123. The correct 
expressions satisfy the equations reported by 
Krishnamurty (1963). Finally, Juretschke (1975) 
(problem 13.17) uses the trick of superimposing the 
results for group m3m with the results for the group 
generated by a 'suitable' rotation about the z axis, but 
he does not specify the order of the rotation to be used 
(and by referring to § 13.5 he unfortunately implies that 
the rotation might be 8~, while the superposition of the 
results for group m3m and group 8(8z) yields the results 
for 0(3) only for tensors of rank r < 8). The scheme 
reported is affected by various errors: in particular, the 
components 1456 = 2456 = 3456 are given as zero, 
the components 1155 = 2266 etc. are given as equal 
to 1144, the components 1244 = 2355 etc. are ex- 
pressed in terms of 1144 and 4444 alone, and an 
incorrect expression is given for the components 
1266 = 2344 = 1355. 
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